Non-Linear Models Examples

Laurent Ferrara

CEF, Ljubljana Nov. 2019

Plan

- Simulations of SETAR
- Simulations of STAR
- 3 Simulations of Markov-Switching
- 4 Application: STECM for GDP-Employment
- 5 Application: Building an economic cycle indicator

Simulation of a SETAR model

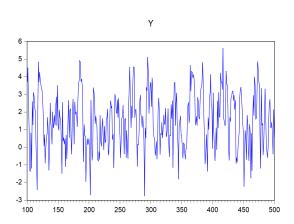
We simulate the following SETAR(2,1):

$$y_t = (1 - I(y_{t-1} > 1))(0.5 - 0.3y_{t-1}) + I(y_{t-1} > 1)(0.1 + 0.8y_{t-1}) + \varepsilon_t,$$
(1)

with unit variance for ε_t (i.e. $\sigma_{\varepsilon}^2=1$)

 We generate 600 observations, but only the last 500 are considered to avoid dependence to starting values (see Figure)

Simulated series for SETAR model



Testing TAR models

- We apply the Hansen (1997) procedure based on Bootstrap replications.
- The 95% acceptance region of F_s for the null of linearity is [1.89, 10.51].
- As the outcome of the test is 54.92, we strongly reject the null of linearity, i.e. the series is supposed to have been generated by a non-linear process

TAR estimation

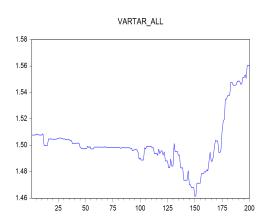
We proceed as follows to estimate the SETAR

- Prepare a grid of M = 200 possible values for the threshold $c \in [-0.05, 1.5]$
- ② For each i = 1, ..., M, generate a dummy D_i such that $D_i = I(y_{t-1} > c_i)$
- Using OLS estimate the following model for each c_i

$$y_t = (1 - D_i)(\phi_{1,0} + \phi_{1,1}y_{t-1}) + D_i(\phi_{2,0} + \phi_{2,1}y_{t-1}) + \varepsilon_t,$$
(2)

- For each i and resulting OLS estimates $\hat{\phi}^i$, let's compute the variance error term $\hat{\sigma}_t^2(c_i)$
- **Search** for $c^* = Arg \min \hat{\sigma}_t^2(c_i)$

We choose $c^* = 1$, corresponding to c_{150}



Estimated parameters for $c^* = 1$

Dependent Variable: Y Method: Least Squares Date: 08/17/17 Time: 15:53 Sample (adjusted): 101 500

Included observations: 400 after adjustments

Std. Error 0.099080	t-Statistic	Prob.
0.099080		
	4.447860	0.0000
0.222073	0.116157	0.9076
0.074419	8.990683	0.0000
0.124134	-2.322899	0.0207
Mean dependent var		1.486710
S.D. dependent var		1.557600
Akaike info criterion		3.237283
Schwarz criterion		3.277198
Hannan-Quinn criter.		3.253090
Durbin-Wats	on stat	1.981115
	S.D. depende Akaike info ci Schwarz crite Hannan-Quir	S.D. dependent var Akaike info criterion Schwarz criterion

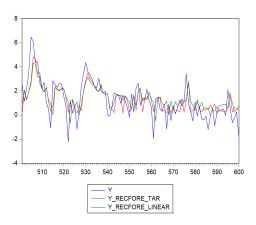
Forecasting TAR models

• The h = 1-step-ahead forecasts are given by:

$$\hat{y}_{\tau}(1) = (1 - I(y_{\tau} > c^{*}))(\hat{\phi}_{1,0} + \hat{\phi}_{1,1}y_{\tau}) + I(y_{\tau} > c^{*})(\hat{\phi}_{2,0} + \hat{\phi}_{2,1}y_{\tau}) + \varepsilon_{t},$$
(3)

• RMSFE with TAR model is equal to 1.08 compared to 1.23 with a simple AR(1) linear model

Forecasts



• We simulate the following STAR(2,1):

$$y_t = (2 - 0.9y_{t-1}) + G(y_{t-1}, \gamma, c)(3 - 0.8y_{t-1}) + \varepsilon_t,$$

with unit variance for ε_t (i.e. $\sigma_\varepsilon^2=1$) and

$$G(y_{t-1}, \gamma, c) = \frac{1}{1 + \exp(-\gamma(y_{t-1} - c))}$$

with $\gamma = 5$ and c = 6

 Be careful to the interpretation of parameters with this specification, in low and high regimes

Simulated series for STAR model



Testing TAR models

- We implement the procedure by Luukkonen, Saikkonen and Terasvirta (1988)
- We use an F-test to test for $\delta=0$ in the following augmented model:

$$y_t = \eta_1 + \eta_2 \tilde{x}_t + \delta \tilde{x}_t q_t + u_t,$$

where
$$\tilde{x}_t = y_{t-1}$$
 and $q_t = \gamma/4(y_{t-1} - c)$

- ullet By simplicity we use the true values of γ and c
- As δ is a scalar in this specific case, the F-test boils down to a Student test for δ (see Table)

Estimated regression for the STAR test

We reject the null of linearity at very low risk α

Dependent Variable: Y

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 08/17/17 Time: 16:38 Sample: 100 500

Included observations: 401

Y=ETA(1)+ETA(2)*Y(-1)+DELTA(1)*Y(-1)*TAYLOR

	Coefficient	Std. Error	t-Statistic	Prob.
ETA(1)	2.809797	1.171045	2.399393	0.0169
ETA(2)	0.586302	0.201058	2.916086	0.0037
DELTA(1)	-0.055042	0.014356	-3.834067	0.0001
R-squared	0.060748	Mean dependent var		6.150589
Adjusted R-squared	0.056028	S.D. dependent var		1.148882
S.E. of regression	1.116233	Akaike info criterion		3.065250
Sum squared resid	495.8986	Schwarz crite	erion	3.095130
Log likelihood	-611.5825	Hannan-Quinn criter.		3.077081
F-statistic	12.87068	Durbin-Watson stat		1.962244
Prob(F-statistic)	0.000004			

Steps for STAR estimation

- Prepare a grid of M=200 possible values for the threshold c and a grid of K=200 values for the smoothing parameter γ
- 2 For each i = 1, ..., M, j = 1, ..., K compute the function:

$$G(y_{t-1}, \gamma_i, c_i) = \frac{1}{1 + \exp(-\gamma_i(y_{t-1} - c_j))}$$

Using OLS estimate the following model linear model We simulate the following STAR(2,1):

$$y_t = (\phi_{01} + \phi_{11}y_{t-1}) + G(y_{t-1}, \gamma_i, c_j)(\phi_{02} + \phi_{12}y_{t-1}) + \varepsilon_t,$$

- For each i, j and resulting estimates $\hat{\phi}$ compute the variance error term $\hat{\sigma}_t^2(\gamma_i, c_i)$
- **Search** for $(\gamma^*, c^*) = \underset{(\gamma_i, c_i)_{i,i}}{Arg} \min \hat{\sigma}_t^2(\gamma_i, c_j)$

Estimation results for STAR

We get
$$c^* = 6$$
 and $\gamma^* = 8.6$ and:

Dependent Variable: Y

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 08/17/17 Time: 16:38 Sample: 100 500

Included observations: 401

Y=ALPHA(1)+ALPHA(2)*Y(-1)+ (BETA(1)-BETA(2)*Y(-1)) * G_EST

	Coefficient	Std. Error	t-Statistic	Prob.
ALPHA(1)	1.970040	0.654466	3.010149	0.0028
ALPHA(2)	0.910297	0.129081	7.052157	0.0000
BETA(1)	3.781540	0.893495	4.232300	0.0000
BETA(2)	0.909919	0.149807	6.073961	0.0000
R-squared	0.190065	Mean dependent var		6.150589
Adjusted R-squared	0.183944	S.D. dependent var		1.148882
S.E. of regression	1.037852	Akaike info criterion		2.922108
Sum squared resid	427.6229	Schwarz criterion		2.961948
Log likelihood	-581.8826	Hannan-Quinn criter.		2.937883
F-statistic	31.05418	Durbin-Watson stat		2.006318
Prob(F-statistic)	0.000000			

Steps for STAR estimation

- As an alternative approach, we can use a Maximum Likelihood estimation
- We need to assume the Gaussianity of the error term
- In such a case, the difficulty is find correct starting values for the maximization algorithm
- \bullet Especially, the value of γ is very difficult to estimate as it is very sensitive to starting values

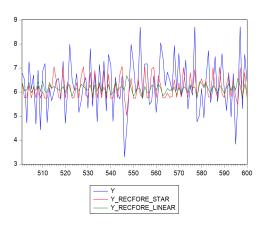
Forecasting TAR models

• The h = 1-step-ahead forecasts are given by:

$$\hat{y}_{T}(1) = (\hat{\phi}_{01} + \hat{\phi}_{11}y_{T}) + G(y_{T}, \gamma^{*}, c^{*})(\hat{\phi}_{02} + \hat{\phi}_{12}y_{T})$$

 RMSFE with STAR is equal to 0.95 compared to 1.04 with a simple AR(1) linear model

Forecasts



Simulation of a MS model

• We simulate the following MS-AR(2) model:

$$y_t = \begin{cases} -0.2 + 1.2y_{t-1} - 0.3y_{t-2} + \varepsilon_t, & \text{if } S_t = 1\\ 0.2 + 0.4y_{t-1} - 0.3y_{t-2} + \varepsilon_t, & \text{if } S_t = 2 \end{cases}$$

with unit variance for ε_t (i.e. $\sigma_\varepsilon^2=1$)

• We generate 600 observations, but only the last 500 are considered to avoid dependence to starting values (see Figure)

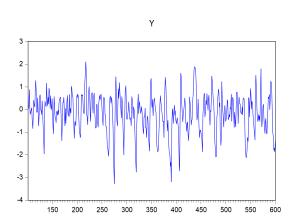
Simulation of a MS model

 We generate the Markov chain state variable supposed to be here a 2-regime Markov chain with the transition matrix:

$$\eta = \left(\begin{array}{cc} 0.83 & 0.25 \\ 0.17 & 0.75 \end{array}\right)$$

• Conditionally on the generated state variable S_t , we simulate the series with different AR(2) dynamics

Simulated series for MS-AR(2) model



Estimated MS-AR(2) model

Dependent Variable: Y

Method: Markov Switching Regression (BFGS / Marquardt steps)

Date: 08/18/17 Time: 11:19 Sample: 101 500

Included observations: 400

Number of states: 2 Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=412318124)
Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	Regi	me 1		
С	0.167649	0.049243	3.404489	0.0007
AR(1)	0.535570	0.059784	8.958425	0.0000
	Regi	me 2		
С	-0.126784	0.067382	-1.881567	0.0599
AR(1)	1.391337	0.049237	28.25784	0.0000
	Com	nmon		
AR(2)	-0.403547	0.044506	-9.067239	0.0000
LOG(SIGMA)	-0.956207 0.048050 -1		-19.90013	0.0000
	Transition Mat	rix Parameters		
P11-C	0.408276	0.452953	0.901367	0.3674
P21-C	-0.603580	0.254304	-2.373456	0.0176
Mean dependent var	-0.141756	S.D. depende	ent var	0.856265
S.E. of regression	0.570283	Sum squared resid		128,1378
Durbin-Watson stat	2.027593	Log likelihood		-282.8282
Akaike info criterion	1.454141	Schwarz criterion		1.533970
Hannan-Quinn criter.	1.485755			
1: Inverted AR Roots	.27+.58i	.2758i		
2: Inverted AR Roots	.98	.41		

Estimated MS-AR(2) model

Equation: EQ_MARKOV Date: 08/18/17 Time: 11:19

Transition summary: Constant Markov transition probabilities and expected durations

Sample: 101 500

Included observations: 400

Constant transition probabilities:

$$P(i, k) = P(s(t) = k | s(t-1) = i)$$

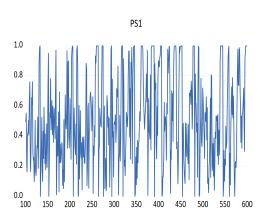
(row = i / column = j)

• •	1	2
1	0.600675	0.399325
2	0.353525	0.646475

Constant expected durations:

1	2
2.504223	2.828655

Smoothed probability of being in regime 1



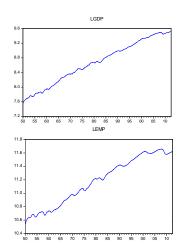
Forecasting with MS

Weak gains as regards forecasting accuracy

```
Model RMSFE DM pval
AR(2) 0.555088 -
MSAR 0.549637 0.248488
```

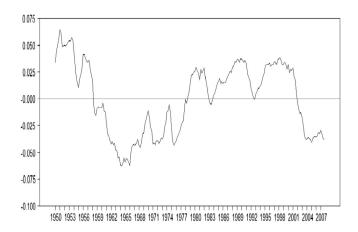
- Results in line with the literature (see Ferrara, Marcellino, Mogliani, IJF, 2015): univariate MS do not perform very well in terms of forecasting accuracy when compared to linear AR models
- MS models are more useful for turning point detection

US log-GDP and log-Employment (1950q1 - 2012q3)



Residuals from the long-run relationship

We assume that residuals are I(0) but non-linear



A Smooth-Transition ECM (STECM)

• The STECM model is given by:

$$\Delta lemp_{t} = \alpha_{0} + \alpha_{1} \Delta lemp_{t-1} + \alpha_{2} \Delta lgdp_{t} + \alpha_{3} \Delta lgdp_{t-1} + \alpha_{4}u_{t-1}$$

$$+ (\alpha'_{0} + \alpha'_{1} \Delta lemp_{t-1} + \alpha'_{2} \Delta lgdp_{t} + \alpha'_{3} \Delta lgdp_{t-1}$$

$$+ \alpha'_{4}u_{t-1}) \times G(Z_{t}, \gamma, c) + \varepsilon_{t}$$

• The transition variable Z_t is a proxy for the business cycle, defined by

$$Z_t = \frac{\Delta lgdp_{t-2} + \Delta lgdp_{t-3}}{2}$$

Estimated STECM

 Table 1

 Estimates for the non-linear error-correction model.

	Regime 1	Regime 2
Constant	-0.0071***	0.0067***
$\Delta LEMP_{t-1}$	0.2149	0.3741***
$\Delta LGDP_t$	0.6439***	-0.3361***
$\Delta LGDP_{t-1}$	0.1932*	-0.1976
ECT_{t-1}	-0.0193**	0.0070
ŷ	5.1624	
ĉ	0.0001	

In order to obtain the relevant coefficients in Regime 2, add the Regime 2 coefficient to the corresponding Regime 1 coefficient.

ECT denotes error-correction term.

^{***} Significant at the 1% level.

^{**} Significant at the 5% level.

^{*} Significant at the 10% level.

124

Estimated STECM: Proba of being in the low regime

M. Chinn et al./Journal of Macroeconomics 42 (2014) 118-129

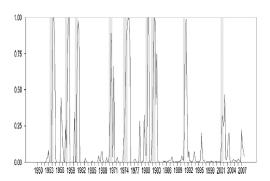


Fig. 3. Estimated transition function and US recessions until 2007Q4. Sources: authors' calculations, and NBER for the dating of recessions. The gray bands represent US recessions.

Estimated STECM: Conditional forecasts

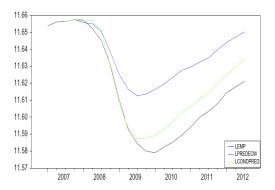


Fig. 6. Conditional forecasts of log-employment stemming from linear and non-linear error-correction models. Note: Conditional forecasts stemming from the linear ECM (blue) and the non-linear ECM (green). Observed values are presented in the dark line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Application: Building an economic cycle indicator

- In Darne and Ferrara (2011, Oxford Bulletin of Eco and Stat)
 we put forward a cyclical indicator to assess acceleration and deceleration phases in the euro area using MS models
- We define what we mean by acceleration cyle and we provide a dating chronology
- We estimate various MS models on opinion survey series in order to build a real-time indicator for the peaks and troughs of this cycle

Application: Defining the acceleration cycle

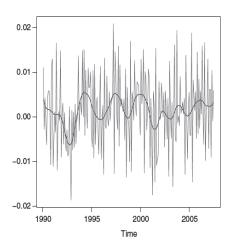


Figure 1. Monthly IPI growth rate and smoothed IPI growth rate obtained by removing high frequencies with a low-pass filter (Jan. 1990–Sep. 2007)

Application: Dating the acceleration cycle

TABLE 1

Turning points chronologies for acceleration cycles for GDP and IPI, as well as the proposed dating (third column)

	GDP	IPI	Dating	Duration	Amplitude	Excess
Peak	1987 Q2	NA	1987 M5			
Trough	1993 Q1	1992 M11	1993 M1	68	2.4	-0.18
Peak	1994 Q1	1994 M3	1994 M3	14	1.6	0.10
Trough	1996 Q1	1996 M2	1996 M2	21	0.9	-0.04
Peak	1997 Q2	1997 M4	1997 M4	16	1.2	-0.14
Trough	1998 Q4	1998 M10	1998 M10	15	1.0	0.07
Peak	1999 Q3	1999 M9	1999 M9	11	1.0	0.03
Trough	2001 Q3	2001 M9	2001 M9	24	1.2	-0.09
Peak	2002 Q2	2002 M4	2002 M4	7	0.4	-0.05
Trough	2003 Q2	2003 M4	2003 M4	12	0.4	0.04
Peak	2004 Q1	2003 M10	2004 M1	9	0.6	0.17
Trough	2004 Q4	2004 M11	2004 M11	10	0.3	0.04
Peak	2006 Q2	2006 M4	2006 M4	17	0.7	-0.05

Notes: Durations are in months and amplitudes are in points of percentage. NA stands for non-available information.

Application: Data

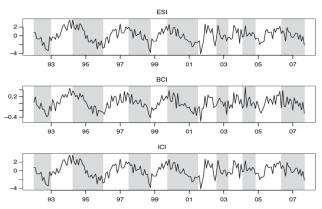


Figure 2. ESI, BCI and ICI (in first differences) and phases of deceleration in the euro area (shaded areas) over the period January 1992–September 2007

Application: Estimation of MS models

Estimation of simple MS models with 2 regimes (low: $S_t = 1$ and high: $S_t = 2$) and without AR lags:

TABLE 9

Parameter estimates of the various multivariate MS models over the period Jan. 1992-Sep. 2007

(except for PMIs since 1998 only). Durations D of each regime are expressed in nonths

	$\mu(S_t = 1)$	$\mu(S_t=2)$	σ_{ϵ}	P11	Pn	$D(S_r = 1)$	$D(S_t = 2)$
Confidence Indexes							
ESI	-1.01	1.77	1.57	0.93	0.88	14	8
BCI	-0.12	0.21	0.17	0.93	0.87	14	8
ICI	-0.89	1.90	1.32	0.94	0.86	16	7

Application: Constructing the acceleration cycle index

• Starting from estimated filtered probabilies of being in regime 1 or 2 we compute the index as:

$$I_t = P(S_t = 2|F_t) - P(S_t = 1|F_t)$$

- Thus $I_t \in [-1, +1]$.
- When I_t is close to 1, the economy accelerates and when I_t is close to -1 the economy decelerates
- ullet When $I_t \sim$ 0, we interpret this as a stagnating growth (at any level)

Application: Empirical results

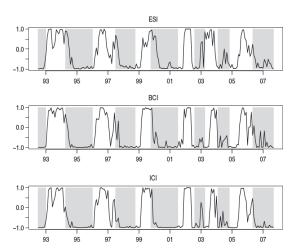


Figure 5. Probabilistic indicators stemming from an MS model applied to ESI (top), BCI (middle) and ICI (bottom) (Jul. 1992–Sep. 2007)